Понятие интенсивности звука и ее измерение
Теория акустики предусматривает три фундаментальных величины звука: звуковое давление, звуковая мощность и интенсивность звука.
Мощность звука – это величина, излучаемая источником звука.
Звуковое давление – величина, характеризующая звуковое поле и воспринимаемая человеческим ухом или звуковыми приборами. Слишком высокое звуковое давление может повредить слух человека. Основные параметры, оказывающие влияние на величину звукового давления, это расстояние от источника звука до воспринимающего его прибора или человека и акустические условия звукового поля. Ввиду этого для определения количества шума, испускаемого каким-либо источником, необходимо определить его звуковую мощность.
С точки зрения математики звуковая мощность это отнесенная к единице времени энергия звука. Интенсивность звука, в свою очередь, отображает скорость потока звуковой энергии через единицу площади, и измеряется в ваттах на квадратный метр (Вт/м2). Отображая направление потока звуковой энергии в определенной точке, интенсивность звука является векторной величиной и измеряется обычно в направлении нормали к определенной единичной площади.
Причины определения интенсивности звука
Основная цель методов акустической интенсометрии – измерение интенсивности звука с целью определения интенсивности и локализации шума и разработке мер по снижению уровня шума на рабочем месте до безопасных для здоровья человека значений. Основным преимуществом измерения интенсивности звука по сравнению с измерением звукового давления является независимость величины этого параметра от параметров звукового поля.
Эта независимость позволяет с большой точностью выявить, идентифицировать и локализовать наиболее шумные узлы станков и механизмов даже на фоне общего звукового поля.
Звуковое поле – это пространство распространения звуковых волн. Описано несколько видов звуковых полей:
- Свободное звуковое поле – такое поле, где звуковые волны распространяются в идеальном пространстве без каких-либо отражений. Примером таких полей могут считаться безэховые камеры и воздушное пространство на значительном удалении от земной поверхности.
- Диффузное звуковое поле – поле, в котором существуют множественные отражения звуковых волн, распространяющихся в результате во всех направлениях с идентичными амплитудой и вероятностью. Благодаря определенному соотношению между звуковым давлением и односторонней интенсивностью звука можно определить звуковую мощность источника в таком поле (ISO 3741).
- Активное и реактивное поля – звуковые поля, для которых соответственно характерно и нехарактерно наличие звукового потока. Любое звуковое поле имеет активную и реактивную составляющие, поэтому суммарная интенсивность звука равна нулю. Практическими примерами реактивных звуковых полей являются поле стоячих волн (в каналах, трубах) и ближнее поле источника звука.
Определение интенсивности звука
Существуют несколько методов определения интенсивности звука:
- Уравнение Эйлера – в этом случае измеряют звуковое давление и градиент звукового давления, т.е. темп его изменения в зависимости от расстояния. Результат измерения градиента подставляют в уравнение Эйлера. Его решение дает колебательную скорость частиц, усредненное произведение которой с величиной звукового давления определяет интенсивность звука.
- Конечно-разностная аппроксимация – в этом случае градиент звукового давления измеряют с помощью зонда с двумя микрофонами, разнесенными на близкое расстояние, в результате чего можно получить кусочно-линейную аппроксимацию функции, соответствующей градиенту давления. Для этого определяют два значения давления, затем разность их разность делят на расстояние между микрофонами зонда. Затем полученный градиент интегрируют, что дает колебательную скорость частиц. Мгновенные значения колебательной скорости умножают на мгновенные значения звукового давления, после чего полученное произведение усредняют по времени и получают значение интенсивности звука.
Уровни интенсивности звука, его давления, мощности и колебательной скорости частиц измеряют в децибелах. Эта величина соответствует отношению соответствующей величины к ее опорному значению, приблизительно соответствующему порогу слышимости.
Чтобы определить звуковую мощность источника шума, его условно окружают опорной поверхностью и умножают среднее значение интенсивности звука на этой поверхности на ее площадь.
Используют три основных типа опорных поверхностей: коробку, полушарие и конформную поверхность. Коробка может иметь любую форму и размеры, ее площадь легко определить, а плоские стенки позволяют достаточно просто усреднить величину интенсивности звука на каждой из них. В результате сложения отдельных значений определяется общая мощность источника звука внутри машины.
Полушарие позволяет ограничить количество измерительных точек, а в случае всенаправленного источника звука в любой из них значение интенсивности будет одинаковым. ISO 3745 рекомендует применять 10 точек на поверхности полушария: одну в вершине и по три на трех окружностях.
Конформная поверхность соответствует форме источника звука и находится на чрезвычайно малом расстоянии от него. Точки замера находятся в ближнем поле источника и обеспечивается большое отношение сигнала к шуму. Результаты позволяют локализовать отдельные источники шума.
Практическое применение интенсиметрии
Интенсиметрия широко применяется в строительстве. Ее используют для разработки эффективных методов звукоизоляции и шумоподавления. В строительной и архитектурной акустике применяются два метода интенсиметрии: основанный на звуковом давлении и основанный на интенсивности звука.
Первый метод описан в стандарте ISO 140 и предполагает использование двух реверберационных помещений с исследуемой перегородкой между ними. В каждом из помещений измеряется средний уровень звукового давления. Отношение интенсивности звука в передаточном помещении к интенсивности в приемном дает коэффициент ослабления звука, присущее исследуемой перегородке.
Второй метод предполагает использование только одного реверберационного помещения. В нем измеряется среднее звуковое давление, а в приемном помещении с помощью аппаратуры измеряют интенсивность звука, пропущенную исследуемым объектом.
Также достаточно часто исследуют шумы, возникающие при вращательной или возвратно-поступательной работе различных механизмов. Нашли применение интенсиметрические методы также для определения эффективности излучения, то есть сообщения воздуху звуковых колебаний. Применяется метод и для интенсиметрии колебаний, распространяющихся в твердых телах. Интенсиметрия широко применяется для исследования вентиляционных каналов, воздуховодов, труб. При этом применение метода для исследования высокоскоростных воздушных потоков не допускается.
Аппаратное обеспечение для интенсиметрии
Комплект оборудования для проведения интенсиметрии в общем случае включает в себя интенсиметрический зонд, анализатор и калибратор.
Интенсиметрический зонд представляет из себя два микрофона, закрепленных на жестокой распорной раме лицевыми сторонами друг против друга. В зависимости от исследуемого диапазона частот микрофоны располагаются на расстоянии 6, 12 или 50 мм друг от друга.
Анализаторы спектра ZET 017 а так же ZET 032, ZET 034 или ZET 038 позволяют в реальном масштабе времени обрабатывать полученные измеренные значения, а программное обеспечение ZETLAB ANALIZ анализировать обработанные сигналы при помощи узкополосного спектрального анализа, долеоктавного спектрального анализа, модального анализа, взаимного корреляционного анализа и пр.
Калибратор представляет собой малую акустическую камеру, в которой создается звуковое поле с точно определенными опорными уровнями давления, колебательной скорости частиц и интенсивности звука. Относительно этого поля калибруются микрофонные комплекты и проверяется точность измерений.
Пример настройки оборудования на базе программно-аппаратного комплекта ZETLAB.
Для получения необходимого результата требуется предварительная настройка программной части комплекта. Для этого понадобятся ряд программ: Формула, Фильтрация и Взаимный узкополосный спектральный анализ.
-
- Запускаем программу Формула из меню Автоматизация панели ZETLAB.
Необходимо установить количество каналов 3 и произвести ряд действий, требуемых для вычисления интенсивности звука.
Как уже было сказано, интенсивность — это усреднённое по времени произведение звукового давления и колебательной скорости частиц. Общая формула для определения интенсивности звука:I =(-2ρΔr)-1(p1+p2)∫(p2-p1)dt,
где ρ — плотность среды,
Δr — расстояние между микрофонной парой,
p1 — звуковое давление, измеренное 1м микрофоном,
p2 — звуковое давление, измеренное 2м микрофоном.
Следовательно, нам необходимо через программу Формула вычислить три величины: разность звукового давления, среднее звуковое давление и градиент звукового давления:
- Запускаем программу Формула из меню Автоматизация панели ZETLAB.
2. Следующий шаг — определение колебательной скорости частиц. Для этого необходимо проинтегрировать полученное значение градиента звукового давления.
Запускаем программу Фильтрация сигналов из меню Автоматизация панели ZETLAB. Выбираем виртуальный канал (созданный с помощью программы Формула), определяющий градиент звукового давления и устанавливаем тип фильтрации Инт.1.
3. Заключительный шаг — получение спектра, соответствующего интенсивности звука. Запускаем программу Взаимный узкополосный спектральный анализ из меню Анализ панели ZETLAB. Производим настройку программы и смотрим усредненный взаимный спектр колебательной скорости частиц и звукового давления.
Желаем удачной работы!