Вихретоковые датчиковые системы
Вихретоковые датчиковые системы (вихретоковые датчики) предназначены для бесконтактного измерения вибрации перемещения и частоты вращения электропроводящих объектов. Они применяются для диагностики состояния промышленных турбин, компрессоров, электромоторов. Наиболее часто объектом контроля является осевое смещение и радиальная вибрация вала ротора относительно корпуса.
Вихретоковая датчиковая система (eddy probe system / proximity sensor system) состоит из бесконтактного вихревого пробника, удлинительного кабеля и драйвера. Вихревой пробник представляет собой металлический зонд с диэлектрическим наконечником (в который заключена катушка индуктивности) на одном конце и отрезком коаксиального кабеля на другом. С помощью коаксиального удлинительного кабеля (максимальная длина кабеля 0,5 м) пробник подключается к драйверу.
Драйвер представляет собой электронный блок, который вырабатывает сигнал возбуждения пробника и осуществляет выделение информативного параметра. Выходным сигналом драйвера является электрический сигнал, пропорциональный расстоянию от торца вихревого пробника до контролируемого объекта.
Принцип работы
В торце диэлектрического наконечника вихревого пробника находится катушка индуктивности (рисунок 1).
Рисунок 1
Драйвер обеспечивает возбуждение электромагнитных колебаний в катушке, в результате чего возникает электромагнитное поле, которое взаимодействует с материалом контролируемого объекта. Если материал обладает электропроводностью, на его поверхности наводятся вихревые токи, которые, в свою очередь, изменяют параметры катушки — ее активное и индуктивное сопротивление. Параметры меняются при изменении зазора между контролируемым объектом и торцом датчика. Драйвер преобразует эти изменения в электрический сигнал, осуществляет его линеаризацию и масштабирование.
Конструкция
Наибольшее количество вариантов исполнения имеет пробник (зонд), поскольку его конструкция зависит от места монтажа и диапазона измерения. Пробник может подключаться к драйверу напрямую или через удлинительный кабель. Для защиты от механического повреждения соединительный кабель защищается металлорукавом. Драйвер представляет собой герметичную металлическую коробку, на которой имеется коаксиальный соединитель для подключения кабеля, а также клеммы питания, заземления, общего провода и выходного сигнала.
Частотные характеристики
Вихретоковые датчики обладают хорошим частотным откликом (реакция на изменение расстояния между торцом пробника и объектом контроля). Частотный диапазон может достигать 0 — 10 000 Гц. При этом неравномерность амплитудно-частотной характеристики не превышает 0,5 дБ.
Вход и выход
Входным параметром вихретокового датчика является величина зазора между торцом пробника и электропроводящим объектом. Величина измеряемого зазора составляет несколько миллиметров и зависит от диаметра катушки, заключенной в торце диэлектрического наконечника. Выходной сигнал, пропорциональный измеряемому зазору, может быть представлен в виде напряжения, тока или в цифровом формате (определяется типом системы наблюдения). Для драйверов с выходным сигналом в виде напряжения указывают чувствительность (коэффициент преобразования зазора в электрический сигнал), которая в большинстве случаев составляет 8 мВ/мкм. Часто для сопряжения вихретокового датчика с типовыми системами мониторинга необходимо дополнительное преобразование выходного напряжения в формат 4 — 20 мА токовой петли или в цифровой вид. Устройства, сочетающие функции драйвера и дополнительного формирователя, называют трансмиттерами.
Области применения
Приоритетной областью использования вихретоковых измерителей является контроль осевого смещения и поперечного биения валов больших турбин, компрессоров, электромоторов, в которых используются подшипники скольжения. Применение для этих целей датчиков скорости и ускорения, хотя и допустимо, но неоправданно, поскольку из-за уменьшения коэффициента пропорциональности между вибросмещением ротора и опоры на низких скоростях вращения, а также значительного (3…10 раз) ослабления вибрации ротора массивным корпусом установки, результат будет иметь большую погрешность. Вихретоковый метод, напротив, обладает исключительной точностью, поскольку не только не имеет нижнего предела по частоте, но и не требует математической обработки результатов измерения ввиду прямого соответствия выходного сигнала текущему смещению вала или измерительного буртика относительно корпуса. В малых турбинах, генераторах и компрессорах, где используются подшипники качения и масса корпуса относительно невелика, для измерения вибрации вала целесообразно использовать датчики скорости и ускорения, размещаемые на корпусе механизма.
Радиальная вибрация
Для измерения величины радиальной вибрации, как правило, используют два датчика, установленные перпендикулярно валу и развернутые относительно друг друга на 90° (рисунок 2).
Рисунок 2
Ортогональное X-Y размещение пробников улучшает диагностические возможности, поскольку позволяет получать как суммарную информацию, так и раздельную по каждой координате, а при наличии соответствующих средств мониторинга позволяет визуально наблюдать орбиту движения вала в радиальной плоскости. Кроме того, измерение векторов вибросмещения в нескольких плоскостях позволяет построить линию динамического прогиба вала.
Осевое смещение
Для измерения осевого сдвига датчик размещают перпендикулярно плоскости торца вала и (или) плоскости измерительного буртика (рисунок 3).
Рисунок 3
В некоторых случаях для надежности используют два датчика (основной и резервный).
Частота вращения
Вихретоковые датчики часто используются для измерения частоты вращения ротора (рисунок 4). Формирование отклика датчика обычно обеспечивается небольшим углублением на валу, полученным методом фрезерования. Такой датчик можно использовать совместно с X-Y датчиками радиальной вибрации. В этом случае датчик выполняет функции формирователя фазовой метки, относительно которой определяется ориентация орбиты движения вала. Для формирования отклика датчика могут использоваться конструктивные особенности ротора, например, наличие шестерни.
Рисунок 4
Использование в вихретоковой системе трансмиттера вместо драйвера позволяет получить на выходе сигнал, величина которого прямо пропорциональна числу оборотов в минуту.
Кроме того…
Вихретоковые даичтковые системы применимы:
- для измерения эксцентриситета валов;
- для измерения толщины диэлектрических (лакокрасочных) покрытий на металлическом основании;
- для измерения величины относительного температурного расширения механизмов;
- для измерения величины износа трущихся деталей и механизмов;
- в качестве бесконтактных концевых выключателей;
- для измерения слоя металлизации на диэлектрическом основании.
Системная конфигурация
Предлагается несколько основных конфигураций вихретоковых систем, отличающихся диаметром катушки пробника, длиной кабеля, параметрами выходного сигнала и характером измеряемой величины. Диаметр катушки пробника определяет диапазон измерения и площадь взаимодействия электромагнитного поля с контролируемым объектом. Считается, что площадь взаимодействия не выходит за пределы воображаемой окружности на поверхности объекта, диаметр которой равен двойному диаметру катушки пробника. Последнее обстоятельство необходимо учитывать при выборе места монтажа пробника, а также при контроле поперечной вибрации вала, поскольку в этом случае облучаемая поверхность цилиндрическая, что является причиной возникновения систематической погрешности, которая растет с увеличением диаметра катушки и уменьшением диаметра вала. Для каждой комбинации — «диаметр катушки + длина системного кабеля» калибруется собственный драйвер или трансмиттер, на который наносится соответствующая маркировка. Несоответствие длины системного кабеля или диаметра катушки пробника маркировке драйвера или трансмиттера приводит к увеличению погрешности. В таблице приведены основные системные характеристики, позволяющие пользователю определить подходящую конфигурацию датчиковой системы для решения существующей прикладной задачи. Основные характеристики вихретоковых датчиковых систем см в разделе продукция.